A fórmula de Euler para poliedros, também conhecida apenas como relação de Euler, foi demonstrada e publicada entre $1750$ e $1751$ pelo magnífico matemático suíço Leonhard Euler.
Exemplos incluem superfícies, nós e laços. A maioria das aplicações é indireta, mas sua influência nos bastidores é vital. Ajuda-nos a compreender como enzimas agem sobre o DNA numa célula, e por que o movimento dos corpos celestes pode ser caótico.
Descartes percebeu que esta relação valia para os demais poliedros regulares. Sendo um sólido com $F$ faces, $A$ arestas e $V$ vértices, então vale a relação:
\begin{equation}
F-A+V=2
\end{equation}
No entanto, Descartes não publicou essa fórmula e encarou o problema apenas como uma curiosidade, ficando a glória de sua demonstração e publicação entre $1750$ e $1751$ a cargo do infatigável Euler, o matemático mais prolífero da história.
Essa relação é válida para todo poliedro convexo, mas existem alguns poliedros não convexos para os quais ela também pode ser verificada. Dessa forma, pode-se dizer que todo poliedro convexo é Euleriano (isso significa que para ele vale a relação de Euler), mas nem todo poliedro Euleriano é convexo.
O que diz?
Os números de faces, arestas e vértices de um sólido não são independentes, mas estão relacionados de uma maneira simples.Por que é importante?
Distingue sólidos com diferentes topologias usando o exemplo mais antigo de invariante topológico. Isso pavimentou o caminho para técnicas mais gerais e mais poderosas, criando um novo ramo da matemática.Qual foi a consequência?
Uma das mais importantes e poderosas áreas da matemática pura: a topologia, que estuda propriedades geométricas que permanecem inalteradas por deformações contínuas.Exemplos incluem superfícies, nós e laços. A maioria das aplicações é indireta, mas sua influência nos bastidores é vital. Ajuda-nos a compreender como enzimas agem sobre o DNA numa célula, e por que o movimento dos corpos celestes pode ser caótico.
Um pouco de história
A topologia teve suas raízes em um curioso padrão numérico percebido por Descartes em $1639$, quando trabalhava com os sólidos de Euclides. Ele notou que um cubo tem $6$ faces, $12$ arestas e $8$ vértices, cuja soma $6-12+8=2$. A mesma relação ocorria no dodecaedro, sendo $12$ faces, $30$ arestas e $20$ vértices, cuja soma $20-30+12=2$.Descartes percebeu que esta relação valia para os demais poliedros regulares. Sendo um sólido com $F$ faces, $A$ arestas e $V$ vértices, então vale a relação:
\begin{equation}
F-A+V=2
\end{equation}
No entanto, Descartes não publicou essa fórmula e encarou o problema apenas como uma curiosidade, ficando a glória de sua demonstração e publicação entre $1750$ e $1751$ a cargo do infatigável Euler, o matemático mais prolífero da história.
Essa relação é válida para todo poliedro convexo, mas existem alguns poliedros não convexos para os quais ela também pode ser verificada. Dessa forma, pode-se dizer que todo poliedro convexo é Euleriano (isso significa que para ele vale a relação de Euler), mas nem todo poliedro Euleriano é convexo.