Quantcast
Channel: O Baricentro da Mente
Viewing all articles
Browse latest Browse all 444

A Soma de Gauss

$
0
0

Uma história interessante do jovem Carl Friederich Gauss $(1777-1855)$ quando este tinha apenas $10$ anos é que em uma das aulas de aritmética, o professor pediu aos alunos que calculassem o valor da soma:
\begin{equation*}
S = 1 + 2 + 3 + \cdots + 99 + 100
\end{equation*}
Não levou muito tempo e Gauss escreveu a resposta em sua pequena lousa: $5050$. Seu professor não acreditou no que vira, enquanto seus colegas somavam termo a termo. Mais incrédulo ficou ao fim da aula quando verificou que a única resposta certa fora a de Gauss, que justificou assim seu procedimento:

“A soma de $1$ com $100$, de $2$ com $99$, de $3$ com $98$, e assim por diante, é sempre igual a $101$. Como na soma desejada o número $101$ aparece $50$ vezes, basta multiplicar $101$ por $50$ para obter $5050$”.

E isso Gauss fez em pouco tempo e sem dificuldades, um prenúncio das grandes contribuições do gênio que foi.

Consideremos a $P.A.$ finita de razão $r$:
\begin{equation*}
a_1+a_2+a_3+\cdots +a_{N-2}+a_{N-1}+a_N
\end{equation*}
A soma $S_N$ de seus $N$ termos pode ser escrita como:

onde:

$\bullet$ $a_1$ é o primeiro termo;
$\bullet$ $a_N$ é p enésimo termo;
$\bullet$ $N$ é o número de termos;
$\bullet$ $S_N$ é a soma dos $N$ termos.

Logo:
\begin{equation*}
S_N=(a_1+a_N)+(a_1+a_N)+\cdots + (a_1+a_N)
\end{equation*}
Como sempre somamos dois termos da $P.A.$ de $N$ termos, teremos $N/2$ parcela iguais a $(a_1+a_N)$, o que nos leva à fórmula da soma dos termos de uma $P.A.$ finita:
\begin{equation}
S_N=\frac{(a_1+a_N)N}{2}
\end{equation}

Exemplo $1$: Tomemos o problema que o professor passou a Gauss e seus colegas: Encontrar a soma dos números naturais de $1$ a $100$ utilizando a fórmula moderna.

Neste caso, precisamos somar os termos da sequência:
\begin{equation*}
S_N=1+2+3+\cdots +98+99+100
\end{equation*}
Observando a sequência acima, temos que $a_1=1$, $a_N=100$ e $N=100$. Aplicando na fórmula do termo geral obtida em $(1)$, obtemos:
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+100)100}{2}=\frac{10100}{2}=5050
\end{equation*}
Que é a mesma soma obtida por Gauss.

Exemplo $2$: Calcular a soma dos primeiros $N$ números ímpares $(1, 3, 5, \cdots , 2N-1, \cdots )$, $N \in \mathbb{N^*}$.
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+2N-1)N}{2}=\frac{2N^2}{2}=N^2
\end{equation*}
Portanto, a soma dos $N$ primeiros números ímpares é igual a $N^2$.

Vamos calcular a soma dos 50 primeiros números ímpares dessa sequência. O primeiro termo é $a_1=1$. Para descobrirmos o quinquagésimo termo da sequência, fazemos: $a_N=2N-1 \Rightarrow a_{50}=2\cdot 50 -1 = 99$. Assim:
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+99)50}{2}=2500
\end{equation*}
Ou simplesmente fazemos:
\begin{equation*}
S_N=N^2=50^2=2500
\end{equation*}

Veja mais: 

Dirichlet e os Números Primos de uma Progressão Aritmética
Soma dos Termos de uma P.G. Finita
Soma dos Termos de uma P.G. Infinita

Imprimir

Viewing all articles
Browse latest Browse all 444

Trending Articles