\alpha \approx \frac{180 \cdot 2^5}{\pi} \ \sqrt{2- \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\frac{(a+b+c)(b+c-a)}{bc}}}}}}} \tag{1}
$$
$$
\beta \approx \frac{180 \cdot 2^5}{\pi} \ \sqrt{2- \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\frac{(a+b+c)(a+c-b)}{ac}}}}}}} \tag{2}
$$
$$
\gamma \approx \frac{180 \cdot 2^5}{\pi} \ \sqrt{2- \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\frac{(a+b+c)(a+b-c)}{ab}}}}}}} \tag{3}
$$
Demonstração
\cos(\alpha) = \frac{b^2+c^2-a^2}{2bc} \tag{4}
$$
\frac{\pi b}{180^\circ} = \frac{\widehat{CP}}{\alpha} \tag{5}
$$
\frac{\pi b}{180^\circ} = \frac{x}{\alpha} \tag{6}
$$
\alpha = \frac{180^\circ \cdot x}{\pi b} \tag{7}
$$
\cos \left( \frac{\alpha}{2} \right) = \pm \sqrt{\frac{1+\cos (\alpha)}{2}} \tag{8}
$$
A relação $(8)$ fornece duas opções:
$$
\cos \left( \frac{\alpha}{2} \right) = \sqrt{\frac{1+\cos (\alpha)}{2}} \tag{9}
$$
$$
\cos \left( \frac{\alpha}{2} \right) = - \sqrt{\frac{1+\cos (\alpha)}{2}} \tag{10}
$$
\cos \left(\frac{\alpha}{2}\right) = \sqrt{\frac{1+\displaystyle \left( \frac{b^2+c^2-a^2}{2bc} \right)}{2}} \tag{11}
$$
\cos \left(\frac{\alpha}{2}\right) = \sqrt{ \frac{2bc+b^2+c^2-a^2}{4bc} }\tag{12}
$$
$$
\cos \left(\frac{\alpha}{2}\right) = \sqrt{\frac{(b+c)^2-a^2}{4bc}} \tag{13}
$$
$$
\cos \left(\frac{\alpha}{2}\right) = \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}} \tag{14}
$$
\cos \left(\frac{\alpha}{4}\right) = \sqrt{\frac{\displaystyle 1+\cos \left(\frac{\alpha}{2}\right)}{2}} \tag{15}
$$
\cos \left(\frac{\alpha}{4}\right) = \sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}} \tag{16}
$$
\cos \left(\frac{\alpha}{8}\right) = \sqrt{\frac{\displaystyle 1+\cos \left(\frac{\alpha}{4}\right)}{2}} \tag{17}
$$
\cos \left(\frac{\alpha}{8}\right) = \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}} \tag{18}
$$
\cos \left(\frac{\alpha}{16}\right) = \sqrt{\frac{\displaystyle 1+\cos \left(\frac{\alpha}{8}\right)}{2}} \tag{19}
$$
\cos \left(\frac{\alpha}{16}\right) = \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}} \tag{20}
$$
\cos \left(\frac{\alpha}{32}\right) = \sqrt{\frac{\displaystyle 1+\cos \left(\frac{\alpha}{16}\right)}{2}} \tag{21}
$$
\cos \left(\frac{\alpha}{32}\right) = \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}} \tag{22}
$$
x_5^2 = b^2+b^2-2\cdot b \cdot b \cdot \cos\left(\frac{\alpha}{32}\right) \tag{23}
$$
$$
x_5^2 = 2b^2 - 2b^2\ \cos\left(\frac{\alpha}{32}\right) \tag{24}
$$
x_5^2 = 2b^2 - 2b^2 \cdot \left( \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}}\right) \tag{25}
$$
$$
x_5^2 = b^2 \left( 2-2\cdot\left( \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}}\right)\right) \tag{26}
$$
x_5 = \sqrt{ b^2 \left( 2-2\cdot\left( \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}}\right)\right)} \tag{27}
$$
$$
x_5 = b \cdot \sqrt{ 2-2\cdot \sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}}} \tag{28}
$$
x_5 = b \cdot \sqrt{ 2-\sqrt{\frac{\displaystyle 4+4\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}{2}}} \tag{29}
$$
$$
x_5 = b \cdot \sqrt{ 2-\sqrt{\displaystyle 2+2\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\sqrt{\frac{\displaystyle 1+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{4bc}}}{2}}}{2}}}{2}}}} \tag{30}
$$
x_5 = b \cdot \sqrt{ 2-\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\displaystyle \sqrt{\frac{4(a+b+c)(b+c-a)}{4bc}}}}}}} \tag{31}
$$
$$
x_5 = b \cdot \sqrt{ 2-\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{bc}}}}}}} \tag{32}
$$
\frac{\pi b}{180^\circ} = \frac{\widehat{CQ}}{\displaystyle \frac{\alpha}{32}} \approx \frac{x_5}{\displaystyle \frac{\alpha}{32}} \tag{33}
$$
$$
\frac{ \alpha}{32} \approx \frac{180^\circ}{\pi b} \cdot x_5 \tag{34}
$$
$$
\alpha \approx \frac{180^\circ \cdot 32}{\pi b} \cdot x_5 \tag{35}
$$
\alpha \approx \frac{180^\circ\cdot 32 \cdot b \cdot \sqrt{ 2-\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{bc}}}}}}}}{\pi b} \tag{36}
$$
$$
\alpha \approx \frac{180^\circ\cdot 2^5}{\pi} \cdot \sqrt{ 2-\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\displaystyle \sqrt{\frac{(a+b+c)(b+c-a)}{bc}}}}}}} \tag{37}
$$
Exemplo 1:
\alpha \approx \frac{180^\circ\cdot 2^5}{\pi} \cdot \sqrt{ 2-\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\sqrt{\displaystyle 2+\displaystyle \sqrt{3,27229361103}}}}}} \tag{38}
$$
$$
\alpha \approx 50,49331131106^\circ \tag{39}
$$
Exemplo 2:
Generalização da fórmula
O autor
- Este artigo foi elaborado por Rodrigo da Costa Moreira, licenciado em Matemática pelo Instituto Federal do Piauí - IFPI - Campus Uruçuí.
- Contato: https://twitter.com/rodrigo_cstm
Links para este artigo:
- https://bit.ly/formula-radicais-aninhados
- https://www.obaricentrodamente.com/2023/06/formula-para-calcular-as-medidas-dos-angulos-internos-de-um-triangulo-qualquer-em-funcao-de-seus-lados.html